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Preface

Python is a programming language that has became more and

more popular over the years. It is a multi-paradigm language.

This means that, rather than forcing coders to adopt one

particular style of coding, it permits several. Object orientation,

structured programming, functional programming, and aspect-

oriented programming are all supported.

Python is dynamically type-checked and uses garbage

collection for memory management. An important feature of

Python is dynamic name resolution, which binds method and

variable names during program execution.

Python is sometimes referred to as a scripting language. In

practice, it is used as a dynamic programming language for both

application development and occasional scripting.

The programming language itself is specified by the Python

Reference Manual [6]. There are many implementation of this

specifications: the most widely used is known as Classical Python

(CPython) and can be considered as the reference implementation

of the language.

Moreover, there is a bunch of other alternative implementa-
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tions, each one with its own features: as examples we might cite

Jython [7], which runs on top of the Java Virtual Machine, Iron-

Python [8], which integrates in the .NET Framework and Python

for Series 60 [9], which runs on Series 60 mobile phones.

Finally, the PyPy project [4] aims at writing a Python

implementation in Python itself. The purpose of this thesis is to

begin extending PyPy in order to obtain a Python interpreter

that runs in the .NET Framework. We should not consider

this project as a mere clone of IronPython: although the two

projects shares some of the goals, future directions of this project

may go beyond IronPython features, because it can be extended

and reused in many different ways, as we will see in the last

chapter.

XI



Chapter 1

An overview of PyPy

1.1. What is PyPy?

Here is the mission statement of the PyPy project:

PyPy is an implementation of the Python program-

ming language written in Python itself, flexible and

easy to experiment with. Our long-term goals are to

target a large variety of platforms, small and large, by

providing a compiler toolsuite that can produce cus-

tom Python versions. Platform, memory and thread-

ing models are to become aspects of the translation

process - as opposed to encoding low level details

into the language implementation itself. Eventually,

dynamic optimization techniques - implemented as

another translation aspect - should become robust

against language changes.

1.2. Architecture overview

PyPy is composed of two independent subsystems: the standard

interpreter and the translation process.

1



Chapter 1 An overview of PyPy

The standard interpreter is the subsystem implementing

the Python language, starting from the parser ending to the

bytecode interpreter. Note that it can run fine on top of CPython

if one is willing to pay for performance penalty for double

interpretation.

The translation process aims at producing a different (low-

level) representation of our standard interpreter. It is composed

of four steps:

Flow graph generation a flow graph representation of the

standard interpreter is produced. A combination of the

bytecode interpreter and a flow object space performs

abstract interpretation to record the flow of objects and

execution throughout a python program into such a flow

graph;

Annotation the annotator performs type inference on the flow

graph;

RTyping the RTyper basing on type annotations, turns the flow

graph into one using only low-level operations that fit the

model of the target platform;

Code generation the selected backend compiles the resulting

flow graph into the target environment; examples of

backends are C, LLVM, Javascript.

2



Chapter 1 An overview of PyPy

1.3. RPython and translation

One of PyPy ’s now achieved objectives is to enable translation

of our standard interpreter into a lower-level language. In

order for our translation and type inference mechanisms to work

effectively, we need to restrict the dynamism of our interpreter-

level Python code at some point. In the start-up phase, we are

completely free to use all kinds of powerful python constructs,

including metaclasses and execution of dynamically constructed

strings. However, when the initialization phase finishes, all code

objects involved need to adhere to a more static subset of Python:

Restricted Python, also known as RPython.

RPython code is restricted in such a way that the Annotator

is able to infer consistent types. How much dynamism we allow in

RPython depends on, and is restricted by, the Flow Object Space

and the Annotator implementation. The more we can improve

this translation phase, the more dynamism we can allow. In some

cases, however, it is more feasible and practical to just get rid of

some of the dynamism we use in our interpreter level code. It

is mainly because of this trade-off situation that the definition

of RPython has shifted over time. Although the Annotator is

pretty stable now and able to process the whole of PyPy, the

RPython definition will probably continue to shift marginally as

we improve it.

3



Chapter 1 An overview of PyPy

1.4. RPython typesystems

The annotator give us a flow graph whose variables are marked

with high level type descriptors, such as SomeInteger, SomeBool

or SomeList.

Before generating low level code we need to assign each

annotated function a “real” type that can easly fit in the target

machine: for example, if we want to generate C source code we

might translate SomeInteger and SomeBool into plain int and

SomeList into a struct containing an array of items and the lenght

of that array.

This process is done by the RTyper and is called rtyping :

since different target machines support different primitive opera-

tions, the rtyper allow backend writers to choose which typesys-

tem to use.

Currently PyPy supports two different typesystems:

lltypesystem(Low Level Typesystem) represents RPython

objects in terms of structs, pointers and arrays and is

suitable for very low level backends such as those targeting

C and LLVM;

ootypesystem (Object Oriented Typesystem) represents

RPython objects in terms of classes and instances and is

suitable for target with object oriented primitives, such as

Java or CLI.

4



Chapter 1 An overview of PyPy

1.5. The Big Picture

Figure 1.1 shows how PyPy ’s subsystems are related.

Figure 1.1: PyPy subsystems

The goal is to produce a CLI backend, i.e. a compiler

that accepts RPython programs and produces .NET executables;

following PyPy naming conventions it has been named gencli.

Once the backend works we can run it on top of CPython

to compile the Standard Interpreter and obtain a .NET Python

interpreter. Since PyPy ’s Standard Interpreter aims to be

compatible with CPython ideally it will be possible to run the

entire translation chain on top of the just created .NET Python

interpreter.

As we saw in section 1.2 the translation process is composed

of four steps; since our tool stays at the very end of the chain we

should take a look at what is produced by earlier steps in order

to understand how the CLI backend works. In particular, chapter

2 will examine the Flow graph generation and Annotation steps,

while chapter 3 will examine the RTyping step. Once we will have

5



Chapter 1 An overview of PyPy

a good knowledge of backends’ starting point, 4 will take a deep

look at gencli internals.

6



Chapter 2

Flow graph model and
annotator model

This chapter is about step 1 and 2 of PyPy architecture, as defined

in section 1.2. In particular in this chapter we will inspect the

flow graph model and the annotator model.

2.1. The flow graph model

In PyPy functions and methods are expressed by flow graphs:

they group together bunch of instructions and determine the order

they are executed. As an example, look at figure 2.1 shows the

flow graph generated from the code in listing 2.1.

Listing 1 Flow graph example

def exp(base, n):

res = 1

while n > 0:

res = res*base

n = n-1

return res

Flow graph are represented by instances of a number of classes

that are grouped in the so called flow graph model. For each class

7



Chapter 2 Flow graph model and annotator model

Figure 2.1: Flow graph example

8



Chapter 2 Flow graph model and annotator model

we give a short description and the list of its attributes.

2.1.1. FunctionGraph

Flow graphs are composed by blocks and links and are represented

by instances of the FunctionGraph class.

startblock the first block. It is where the control goes when the

function is called. The input arguments of the startblock

are the function’s arguments. If the function takes a *args

argument, the args tuple is given as the last input argument

of the startblock.

returnblock the (unique) block that performs a function return.

It is empty, not actually containing any return operation;

the return is implicit. The returned value is the unique

input variable of the returnblock.

exceptblock the (unique) block that raises an exception out of

the function. The two input variables are the exception

class and the exception value, respectively. (No other block

will actually link to the exceptblock if the function does not

explicitely raise exceptions.)

2.1.2. Block

Basic blocks are represented by instances of the Block class; it

contains a list of operations and ends in jumps to other basic

blocks. All the values that are “live” during the execution of the

9



Chapter 2 Flow graph model and annotator model

block are stored in Variables. Each basic block uses its own

distinct Variables.

inputargs list of fresh, distinct Variables that represent all the

values that can enter this block from any of the previous

blocks.

operations list of low level operations to be executed sequen-

tially.

exitswitch see below

exits list of Links representing possible jumps from the end of

this basic block to the beginning of other basic blocks.

Each Block ends in one of the following ways:

unconditional jump exitswitch is None, exits contains a single

Link.

conditional jump exitswitch is one of the Variables that appear

in the Block, and exits contains one or more Links (usually

2). Each Link’s exitcase gives a concrete value. This is

the equivalent of a “switch”: the control follows the Link

whose exitcase matches the run-time value of the exitswitch

Variable. It is a run-time error if the Variable doesn’t match

any exitcase.

exception catching exitswitch is Constant exception). The

first Link has exitcase set to None and represents the non-

exceptional path. The next Links have exitcase set to

10



Chapter 2 Flow graph model and annotator model

a subclass of Exception, and are taken when the last

operation of the basic block raises a matching exception.

(Thus the basic block must not be empty, and only the last

operation is protected by the handler.)

return or except the returnblock and the exceptblock have

operations set to an empty tuple, exitswitch to None, and

exits empty.

2.1.3. Link

Instances of the Link class connect different Blocks togheter.

prevblock the Block that this Link is an exit of.

target the target Block to which this Link points to.

args a list of Variables and Constants, of the same size as the

target Block’s inputargs, which gives all the values passed

into the next block. (Note that each Variable used in the

prevblock may appear zero, one or more times in the args

list.)

exitcase see above.

last exception None or a Variable; see below.

last exc value None or a Variable; see below.

Note that args uses Variables from the prevblock, which

are matched to the target block’s inputargs by position, as in a

tuple assignment or function call would do.

11



Chapter 2 Flow graph model and annotator model

If the link is an exception-catching one, the last exception

and last exc value are set to two fresh Variables that are

considered to be created when the link is entered; at run-time,

they will hold the exception class and value, respectively. These

two new variables can only be used in the same link’s args list,

to be passed to the next block (as usual, they may actually not

appear at all, or appear several times in args).

2.1.4. SpaceOperation

This class represents a recorded (or otherwise generated) basic

high level operation, such as add or getitem.

opname the name of the operation.

args list of arguments. Each one is a Constant or a Variable

seen previously in the basic block.

result a new Variable into which the result is to be stored.

Note that operations usually cannot implicitly raise exceptions

at run-time; so for example, code generators can assume that a

getitem operation on a list is safe and can be performed without

bound checking. The exceptions to this rule are:

1. if the operation is the last in the block, which ends with

exitswitch == Constant(last exception), then the im-

plicit exceptions must be checked for, generated, and caught

appropriately

12



Chapter 2 Flow graph model and annotator model

2. calls to other functions, as per simple call or call args,

can always raise whatever the called function can raise —

and such exceptions must be passed through to the parent

unless they are caught as above.

2.1.5. Variable

A placeholder for a run-time value. There is mostly debugging

stuff here.

name it is good style to use the Variable object itself instead of

its name attribute to reference a value, although the name is

guaranteed unique.

2.1.6. Constant

A constant value used as argument to a SpaceOperation, or as

value to pass across a Link to initialize an input Variable in the

target Block.

value the concrete value represented by this Constant.

key a hashable object representing the value.

A Constant can occasionally store a mutable Python object.

It represents a static, pre-initialized, read-only version of that

object. The flow graph should not attempt to actually mutate

such Constants.

13



Chapter 2 Flow graph model and annotator model

2.2. The annotator model

The major goal of the annotator is to “annotate” each variable

that appears in a flow graph. An “annotation” describes all the

possible Python objects that this variable could contain at run-

time, based on a whole-program analysis of all the flow graphs —

one per function.

An “annotation” is an instance of SomeObject. There are

subclasses that are meant to represent specific families of objects.

Note that these classes are all meant to be instantiated; the classes

SomeXxx themselves are not the annotations.

In this section we only take a look at what the annotator

produces, not how. For more details on how the annotator works,

see [5].

Here is a brief overview of the class involved:

SomeObject it is the base class. An instance SomeObject()

represents any Python object. It is used for the case where

we don’t have enough information to be more precise. In

practice, the presence of SomeObject() means that we have

to make the annotated source code simpler or the annotator

smarter.

SomeInteger SomeInteger() represents any integer.

SomeInteger(nonneg=True) represent a non-negative

integer (>=0).

SomeBool SomeBool() represents any boolean.

14



Chapter 2 Flow graph model and annotator model

SomeString : SomeString() represents any string; SomeChar()

a string of length 1.

SomeTuple SomeTuple([s1,s2,..,sn]) represents a tuple of

length n. The elements in this tuple are themselves

constrained by the given list of annotations. For example,

SomeTuple([SomeInteger(), SomeString()]) represents

a tuple with two items: an integer and a string. The lenght

of the tuple must be known: we don’t try to handle tuples

of varying length (the program should use lists instead).

SomeList it stands for a list of homogeneous type (i.e. all the

elements of the list are represented by a single common

SomeXxx annotation).

SomeDict it stands for a homogeneous dictionary (i.e. all keys

have the same SomeXxx annotation, and so have all values).

SomeInstance stands for an instance of the given class or

any subclass of it. For each user-defined class seen by

the annotator, we maintain a ClassDef describing the

attributes of the instances of the class; essentially, a

ClassDef gives the set of all class-level and instance-level

attributes, and for each one, a corresponding SomeXxx

annotation.

All the SomeXxx instances can optionally have a const

attribute, which means that we know exactly which Python object

the Variable will contain.

15



Chapter 2 Flow graph model and annotator model

For a large part of operations when encountering SomeXxx

with const set the annotator will do constant propagation and

produce results with also ’const’ set. This also means that based

on const truth values the annotator will not flow into code that

is not reachable given global constant values. A later graph

transformation will remove such dead code.

16



Chapter 3

Introduction to
ootypesystem

As we saw in sections 1.2 and 1.4, the goal of the RTyper is to turn

the high-level, annotated operations of a flow graph into a low-

level representation that is suitable for being easily translated by

backends because it makes use of types and operations natively

available on the target platform.

Of course, the exact low-level representation depends on what

primitives we might assume the target platform provides: the role

of a PyPy typesystem is to define a set of low-level types and

operations to be used for targeting platforms providing a precise

set of primitives.

In this chapter we will examine the Object Oriented

Typesystem (ootypesystem), which is tailored for backends that

natively supports constructs like classes, exceptions, and so on.

3.1. The target platform

There are plenty of object oriented languages and platforms

around, each one with its own native features: they could be

17



Chapter 3 Introduction to ootypesystem

statically or dynamically typed, they could support or not things

like multiple inheritance, classes and functions as first class order

objects, generics, and so on.

The goal of ootypesystem is to define a trade-off between all

the potential backends that let them to use the native facilities

when available while not preventing other backends to work when

they aren’t.

3.1.1. Types and classes

ootypesystem defines a number of primitive types that are

reasonably available on all platforms, as listed in table 3.1.

Bool boolean values

Signed signed integers (usually 32 bit)

Unsigned unsigned integers (usually 32 bit)

SignedLongLong signed long integers (usually 64 bit)

UnsignedLongLong unsigned long integers (usually 64 bit)

Float double precision floating point numbers

Char ASCII characters

UniChar Unicode characters

Void used for constants known at compile time; it will

disappear in the generated code

Table 3.1: ootypesystem primitive types

The target platform is supposed to support classes and

instances with single inheritance. Instances of user-defined

classes are mapped to the Instance type, whose superclass

attribute indicates the base class of the instance. At the very

beginning of the inheritance hierarchy there is the Root class,

18



Chapter 3 Introduction to ootypesystem

i.e. the common base class between all instances; if the target

platform has the notion of a common base class too, the backend

can choose to map the Root class to its native equivalent, if any.

Object of Instance type can have attributes and methods:

attributes are got and set by the oogetfield and oosetfield

operations, while method calls are expressed by the oosend

operation (see section 3.2.5).

Classes are passed around using the Class type: this is

a first order class type whose only goal is to allow runtime

instantiation of the class. Backends that don’t support this

feature natively, such as Java, may need to use some sort of

placeholder instead.

3.1.2. Static vs. dynamic typing

The target platform is assumed to be statically typed, i.e. the

type of each object is known at compile time.

As usual, it is possibile to convert an object from type to type

only under certain conditions; there is a number of predefined

conversion between primitive types such as from Bool to Signed

or from Signed to Float. For each one of these conversions there

is a corresponding low level operation, such as cast bool to int

and cast int to float (see section 3.2.3).

Moreover it is possibile to cast instances of a class up and down

the inheritance hierarchy with the ooupcast and oodowncast low

level operations (see section 3.2.5). Implicit upcasting is not

allowed, so you really need to do a ooupcast for converting from

19



Chapter 3 Introduction to ootypesystem

a subclass to a superclass.

With this design statically typed backends can trivially

insert appropriate casts when needed, while dynamically typed

backends can simply ignore some of the operation such as

ooupcast and oodowncast. Backends that supports implicit

upcasting, such as CLI and Java, can simply ignore only

ooupcast.

3.1.3. Exception handling

Since flow graphs are meant to be used also for very low level

backends such as C, they are quite unstructured, as we saw in

section 2.1.3.

This means that the target platform doesn’t need to have a

native exception handling mechanism, since at the very least

the backend can handle exceptions just like genc does.

By contrast we know that most of high level platforms natively

support exception handling, so ootypesystem is designed to let

them to use it. In particular the exception instances are typed

with the Instance type, so the usual inheritance exception

hierarchy is preserved and the native way to catch exception

should just work.

3.1.4. Built-in types

It seems reasonable to assume high level platforms to provide

built-in facilities for common types such as lists or hashtables.

20



Chapter 3 Introduction to ootypesystem

String self-descriptive

StringBuilder used for dynamic building of string

List a variable-sized, homogeneous list of object

Dict a hashtable of homogeneous keys and values

CustomDict same as dict, but with custom equal and hash

functions

DictItemsIterator a helper class for iterating over the elements of a

Dict

Table 3.2: ootypesystem built-in types

RPython standard types such as List and Dict are imple-

mented on top of these common types, as shown by table 3.2.

Each of these types is a subtype of BuiltinADTType and has

set of ADT (Abstract Data Type) methods (hence the name

of the base class) for being manipulated. Examples of ADT

methods are ll length for List and ll get for Dict.

From the backend point of view instances of built-in types are

treated exactly as plain Instances, so usually no special-casing

is needed. The backend is supposed to provide a bunch of classes

wrapping the native ones in order to provide the right signature

and semantic for the ADT methods.

As an alternative, backends can special-case the ADT types

to map them directly to the native equivalent, translating the

method names on-the-fly at compile time.

3.1.5. Other types

There are few more ootypesystem types that don’t fit into

categories above:
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StaticMethod used for representing static methods and plain

functions. As for Class, it is a first-class-order type: this

means that StaticMethod objects can be passed around

and called with the indirect call instruction (see section

3.2.4).

Meth subclass of StaticMethod, used for representing bound

methods.

Record used for grouping together a bunch of fields, much

similar to C structs.; from the backend point of view the

main difference with Instance is that Records don’t have

methods.

3.1.6. Generics

Some target platforms offer native support for generics, i.e.

classes that can be parametrized on types, not only values. For

example, if one wanted to create a list using generics, a possible

declaration would be to say List<T>, where T represented the

type. When instantiated, one could create List<Integer> or

List<Animal>. The list is then treated as a list of whichever

type is specified.

Each subclass of BuiltinADTTypes defines a bunch of type

parameters by creating some class level placeholder in the form

of PARAMNAME T; then it fills up the GENERIC METHODS attribute

by defining the signature of each of the ADT methods using

those placeholders in the appropriace places. As an example,
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look at listing 2, which shows part of the implementation of the

ootypesystem’s List type.

Listing 2 Excerpt from ootype.List

class List(BuiltinADTType ):
# placeholders for types

SELFTYPE_T = object ()
ITEMTYPE_T = object ()

...

def _init_methods(self):
# ’ITEMTYPE_T ’ is used as a placeholder for indicating

# arguments that should have ITEMTYPE type.

# ’SELFTYPE_T ’ indicates ’self’

self._GENERIC_METHODS = frozendict ({
"ll_length": Meth ([], Signed),
"ll_getitem_fast": Meth([ Signed], self.ITEMTYPE_T),
"ll_setitem_fast": Meth([Signed , self.ITEMTYPE_T ], Void),
"_ll_resize_ge": Meth([ Signed], Void),
"_ll_resize_le": Meth([ Signed], Void),
"_ll_resize": Meth([ Signed], Void),

})

...

Thus backends that support generics can simply look for

placeholders for discovering where the type parameters are used.

Backends that don’t support generics can simply use the Root

class instead (see section 3.1.1) and insert the appropriate casts

where needed. Note that placeholders might also stand for

primitive types, which typically require more involved casts: e.g.

in Java, making wrapper objects around ints.

3.2. Low-level instructions

After flow graphs have been rtyped, they contain lists of low-level

instructions; some of these low-level instructions are the same
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used by lltypesystem, while others are specific to ootypesystem, as

we will see in this section.

Many low-level instructions are strongly typed, i.e. they can

operate only with operands of a precise type; these instructions

are prefixed with the name of the type. For historical reasons, the

type name is not the same as the types we saw in section 3.1.1,

as shown by table 3.3. So, for example, the low-level instruction

for integer addition is int add.

Bool bool

Signed int

Unsigned uint

SignedLongLong llong

UnsignedLongLong ullong

Float float

Char char

UniChar unichar

Table 3.3: Type names used by instructions

3.2.1. Comparison instructions

As the name suggests, these instructions are used to compare two

values: they are composed by a prefix, indicating the type of the

operands, and a suffix, that indicates the actual operation: equal

to, not equal to, greater than, greater than or equal to, less than,

less than or equal to (eq, ne, gt, ge, lt, le, respectively).

int, uint, llong, ullong, float and char provide instruc-

tions for all types of comparisons, while unichar and bool provide

instructions for equality and disequality only.
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3.2.2. Arithmetic instructions

As for comparison instructions, the arithmentic ones are prefixed

by the name of the type which they operate on. All numeric

types provide instructions for negation, addition, difference and

multiplication (neg, add, sub and mul, respectively).

Moreover integer types provide instructions for integer divi-

sion and modulo (floordiv, mod), while the float type provides

an instruction for exact division (truediv).

Integer types also provide bitwise operations such as logical

not, and, or, xor, left-shifting and right shifting (invert, and, or,

xor, lshift and rshift).

Finally, all numeric types provide the abs instruction which,

as the name suggest, computes the absolute value.

3.2.3. Conversion instructions

Table 3.4 shows instructions used for casting and converting

values from type to type; most of them are self-explanatory.

The is true instruction tests the truth value of numeric types

in the usualy way: zero is false, non-zero is true, while same as

simply renames the variable, with no conversion at all.

3.2.4. Function call

There are two instructions for calling functions:

direct call call the given statically-known function.
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cast bool to int

cast bool to uint

cast bool to float

cast char to int

cast unichar to int

cast int to char

cast int to unichar

cast int to uint

cast int to float

cast int to longlong

cast uint to int

cast float to int

cast float to uint

truncate longlong to int

is true

same as

Table 3.4: Conversion instructions

indirect call call the given StaticMethod object (see section

3.1.5).

3.2.5. Object oriented instructions

Table 3.5 shows ootypesystem-specific instructions:
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new create a new instance of the given statically-known

class

runtimenew create a new instance of the given Class object

(see section 3.1.1)

oosetfield set the value of an object’s field

oogetfield get the value of an object’s field

oosend “send a message” to an object, i.e. call a method

ooupcast self-descriptive

oodowncast self-descriptive

oois identity test

oononnull return False if the object is null, True otherwise

instanceof test if an object is an instance of the given class

subclassof test if a class is a subclass of the given class

ooidentityhash return the hash code of an object

oostring convert char, int, float and instances to

string

ooparse int convert a string to an int, given the base

Table 3.5: Object oriented instructions

27



Chapter 4

The CLI backend

As we saw in section 1.5 the goal of gencli is to compile RPython

programs to the CLI virtual machine.

This chapter explains both how gencli works and the reasons

behind its design, giving the pros and the cons of the alternatives

that came up during the development.

Most of the code belonging to gencli is located in the

pypy.translator.cli subpackage, so referred gencli modules

are located in the pypy/translator/cli/ subdirectory.

4.1. Target environment and language

The target of gencli is the Common Language Infrastructure

environment as defined by [10].

While in an ideal world we might suppose gencli to run fine

with every implementation conforming to that standard, we know

the world we live in is far from ideal, so extra efforts can be needed

to mantain compatibility with more than one implementation.

At the moment of writing the two most popular implementa-

tions of the standard are supported: Microsoft Common Lan-

guage Runtime (CLR) [11] and Mono [12].
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Then we have to choose how to generate the real executables.

There are two main alternatives: generating source files in some

high level language (such as C#) or generating assembly level

code in Intermediate Language (IL).

The IL approach is much faster during the code generation

phase, because it doesn’t need to call a compiler. By contrast the

high level approach has two main advantages:

• the code generation part could be easier because the target

language supports high level control structures such as

structured loops;

• the generated executables take advantage of compiler’s

optimizations.

In reality the first point is not an advantage in the PyPy

context, because as we saw in section 2.1 the flow graph we start

from is quite low level and Python loops are already expressed

in terms of branches (i.e., gotos).

About the compiler optimizations we must remember that the

flow graph we receive from earlier stages is already optimized:

PyPy implements a number of optimizations such a constant

propagation and dead code removal, so it’s not obvious if the

compiler could do more.

Moreover by emitting IL instruction we are not constrained

to rely on compiler choices but can directly choose how to

map ootypesystem operations to CLI opcodes (see section 4.6):

since the backend often know more than the compiler about
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the context, we might expect to produce more efficient code by

selecting the most appropriate instruction; e.g., we can check for

arithmetic overflow only when strictly necessary (see section

4.7).

The last but not least reason for choosing the low level

approach is flexibility in how to get an executable starting from

the IL code we generate:

• we can write IL code to a file, then call the ilasm

assembler;

• we can directly generate code on the fly by accessing the

facilities exposed by the System.Reflection.Emit API.

The second point is not feasible yet because at the moment

there is no support for accessing system libraries, but in future

it could lead to an interesting gencli feature, i.e. the ability to

emitting dynamic code at runtime.

4.2. Handling platform differences

Since our goal is to support both Mono and Microsoft CLR we

have to handle the differences between the twos; in particular the

main differences are in the name of the helper tools we need to

call:

• we call ilasm on CLR and ilasm2 on Mono to assemble IL

files;
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• we call csc on CLR and gmcs on Mono to compile C# files;

• on Mono we need to call the runtime mono to execute

programs, while on CLR we can start them directly.

The code that handles these differences is located in the

sdk.py module: it defines an abstract class exposing some

methods returning the name of the helpers and one subclass for

each of the two supported platforms, as shown by listing 3.

Listing 3 Platform SDK specification

class MicrosoftSDK(AbstractSDK ):
RUNTIME = []
ILASM = ’ilasm’

CSC = ’csc’

class MonoSDK(AbstractSDK ):
RUNTIME = [’mono’]
ILASM = ’ilasm2 ’

CSC = ’gmcs’

3.1 3.2

Then, we choose the default SDK to use based on the platform

we are running on: MicrosoftSDK on Windows, MonoSDK on other

platforms.

4.3. Targeting the CLI Virtual Machine

In order to write a CLI backend we have to take a number of

decisions. First, we have to choose the typesystem to use: given

that CLI natively supports primitives like classes and instances,

ootypesystem is the most natural choice (see chapter 3).

Once the typesystem has been chosen there is a number of

steps we have to do for completing the backend:

• map ootypesystem’s types to CLI Common Type Sys-

tem’s types;
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• map ootypesystem’s low level operation to CLI instruc-

tions;

• map Python exceptions to CLI exceptions;

• write a code generator that translates a flow graph into

a list of CLI instructions;

• write a class generator that translates ootypesystem’s

classes into CLI classes.

4.4. Mapping primitive types

As discussed in section 1.3 the RTyper give us a flow graph

annotated with types belonging to ootypesystem (see chapter 3):

in order to produce CLI code we need to translate these types

into their Common Type System equivalents.

For numeric types the conversion is straightforward, since

there is a one-to-one mapping between the two typesystems, so

that e.g. Signed maps to int32 and Float maps to float64.

For character types the choice is more difficult: RPython

has two distinct types for plain ASCII and Unicode characters

(named Char and UniChar), while .NET only supports Unicode

with the char type. There are at least two ways to map plain

Char to CTS:

• map Char to int8 and UniChar to char, thus mantaining

the original distinction between the two types: this has

the advantage of being a one-to-one translation, but has
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the disadvantage that RPython strings will not be

recognized as .NET strings, since they only would be

sequences of bytes;

• map both Char and UniChar to char, so that Python

strings will be treated as strings also by .NET: in this case

there could be problems with existing Python modules that

use strings as sequences of byte, such as the built-in struct

module, so we need to pay special attention.

We think that mapping Python strings to .NET strings

is fundamental, so we chose the second option.

The code that implements the type-mapping is located in

the module cts.py.

4.5. Mapping built-in types

As we saw in section 3.1.6, ootypesystem defines a set of types

that take advantage of built-in types offered by the platform.

For the sake of simplicity we decided to write wrappers

around .NET classes in order to match the signatures required

by ootypesystem. These wrappers are in pypylib.dll (see section

4.10); table 4.1 shows the .NET classes which they are built on

top of.

Wrappers exploit inheritance for wrapping the original

classes, so, for example, pypy.runtime.List<T> is a subclass

of System.Collections.Generic.List<T> that provides meth-

ods whose names match those found in the GENERIC METHODS of
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String System.String

StringBuilder System.Text.StringBuilder

List System.Collections.Generic.List<T>

Dict System.Collections.Generic.Dictionary<K, V>

CustomDict not implemented, yet

DictItemsIterator pypy.runtime.DictItemsIterator

Table 4.1: gencli built-in types

ootype.List.

The only exception to this rule is the String class,

which is not wrapped since in .NET we can not subclass

System.String. Instead, we provide a bunch of static

methods in pypylib.dll that implement the methods declared by

ootype.String. GENERIC METHODS, then we call them by explic-

itly passing the string object in the argument list.

Listing 4 shows an excerpt of both the List and the String

classes: note how the two implementations differ, because on the

left we have an instance method (hence we use this), while on

the right we have a plain static method.

Listing 4 Wrappers around built-in types
public class List <T>:

System.Collections .\
Generic.List <T>

{
public int ll_length ()
{

return this.Count;
}
...

}

public class String
{

public static int
ll_strlen(string s)

{
return s.Length;

}

}

4.1 4.2
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4.6. Mapping instructions

PyPy ’s low level operations are expressed in Static Single

Information (SSI) form; they looks like listing 5.1, where v0

and v1 are the arguments of the operation and v2 is the result.

By contrast the CLI virtual machine is stack based, that

means the each operation pops its arguments from the top of

the stacks and pushes its result there. The most straightforward

way to translate SSI operations into stack based operations is to

explicitly load the arguments and store the result into the

appropriate places.

Listing 5 shows an example of how basic operations are

translated: the code produced works correctly but has some

inefficiency issue that can be addressed during the optimization

phase.

Listing 5 Example of basic operation

v2 = int_add(v0 , v1)

LOAD v0
LOAD v1
int_add

STORE v2

5.1 5.2

The CLI Virtual Machine is fairly expressive, so the conversion

between PyPy ’s low level operations and CLI instruction

is relatively simple: many operations maps directly to the

correspondent instruction, e.g int add and int sub maps to add

and sub.

By contrast some instructions do not have a direct correspon-

dent and have to be rendered as a sequence of CLI instruc-
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tions: this is the case of the “less-equal” and “greater-equal”

family of instructions, that are rendered as “greater” or “less”

followed by a boolean “not”, respectively.

Finally, there are some instructions that cannot be rendered

directly without increasing the complexity of the code generator,

such as int abs (which returns the absolute value of its

argument). These operations are translated by calling some

helper function written in C# (see section 4.10).

The code that implements the mapping is in the modules

metavm.py and opcodes.py.

4.7. Mapping exceptions

Both RPython and CLI have its own set of exception

classes: some of these are pretty similar; e.g., we have

OverflowError, ZeroDivisionError and IndexError on the

first side and OverflowException, DivideByZeroException and

IndexOutOfRangeException on the other side.

The first attempt was to map RPython classes to their

corresponding CLI ones: this worked for simple cases, but it

would have triggered subtle bugs in more complex ones, because

the two exception hierarchies don’t completely overlap.

At the moment we’ve choosen to build an RPython exception

hierarchy completely independent from the CLI one, but this

means that we can’t rely on exceptions raised by built-in

operations. The currently implemented solution is to do an

exception translation on-the-fly.
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As an example consider the RPython int add ovf operation,

that sums two integers and raises an OverflowError exception

in case of overflow. For implementing it we can use the built-in

add.ovf CLI instruction that raises System.OverflowExcepion

when the result overflows, catch that exception and throw a new

one, as shown in listing 4.7.

Listing 6 Exception translation
.try

{

ldarg ’x_0’

ldarg ’y_0’

add.ovf

stloc ’v1’

leave __check_block_2

}

catch [mscorlib]System.OverflowException

{

newobj instance void class OverflowError::.ctor()

throw

}

4.7.1. A possible optimization

Though we haven’t measured timings yet we can guess that

this machinery brings to some performance penalties even in the

non-overflow case; a possible optimization is to do the on-the-

fly translation only when it is strictly necessary, i.e. only

when the except clause catches an exception class whose subclass

hierarchy is compatible with the built-in one.

As an example, consider listing 7.1: since IndexError has no

37



Chapter 4 The CLI backend

subclasses, we can map it to IndexOutOfBoundException and

directly catch this one, as shown by listing 7.2

Listing 7 Exception mapping optimization

try:
return mylist [0]

except IndexError:

return -1

try
{

ldloc ’mylist ’
ldc.i4 0
call int32 getitem(MyListType , int32)
...

}
catch [ mscorlib]

System.IndexOutOfBoundException
{

// return -1
...

}

7.1 7.2

By contrast we can’t do so if the except clause catches classes

that don’t directly map to any built-in class, as shown by listing

8.

4.8. Translating flow graphs

As we saw in section 2.1 in PyPy function and method bodies

are represented by flow graphs, so we need to translate them

to CLI IL code. Flow graphs are expressed in a format that is

very suitable for being translated to low level code, so that phase

is quite straightforward, though the code is a bit involed because

we need to take care of three different types of blocks.

The code doing this work is located in the Function.render

method in the file function.py.

First of all it searches for variable names and types used by

each block; once they are collected it emits a .local IL statement
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Listing 8 Exception translation

try:
return mylist [0]

except LookupError:

return -1

.try
{

ldloc ’mylist ’
ldc.i4 0
.try
{

call int32 getitem(MyListType , int32)
}
catch [ mscorlib]

System.IndexOutOfBoundException
{

// throw a fresh exception
newobj instance void class

IndexError ::. ctor()
throw

}
...

}
.catch LookupError
{

// return -1
...

}

8.1 8.2

used for indicating the virtual machine the number and type of

local variables used.

Then it sequentally renders all blocks in the graph, starting

from the start block (see section 2.1.1); special care is taken for

the return block which is always rendered at last to meet CLI

requirements.

Each block starts with an unique label that is used for

jumping across, followed by the low level instructions the block

is composed of; finally there is some code that jumps to the

appropriate next block.

Conditional and unconditional jumps are rendered with their

corresponding IL instructions: br, brtrue, brfalse.
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Blocks that needs to catch exceptions use the native

facilities offered by the CLI virtual machine: the entire block

is surrounded by a .try statement followed by as many catch as

needed: each catching sub-block then branches to the appropriate

block, as shown by listing 9.

Listing 9 Exception handling

try:
# block0

...
except ValueError:

# block1

...
except TypeError:

# block2

...

# block3

block0:
.try {

...
leave block3

}
catch ValueError {

...
leave block1

}
catch TypeError {

...
leave block2

}
block1:

...
br block3

block2:
...
br block3

block3:

...

9.1 9.2

4.9. Translating classes

As we saw in section 3.1.1, the semantic of ootypesystem classes

is very similar to the .NET one, so the translation is mostly

straightforward.

The related code is located in the module class .py.

Rendered classes are composed of four parts:

• fields;
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• user defined methods;

• default constructor;

• the ToString method, mainly for testing purposes (see

section 4.11).

All user defined methods are declared as virtual, since

ootypesystem implicitly assumes method calls to be late bound.

As a future optimization we could check if the virtual flag is

really needed, and drop it if it’s not.

The constructor does nothing more than initializing class fields

to their default value.

Inheritance is straightforward too, as it is natively supported

by CLI. The only noticeable thing is that we map ootype-

system’s Root class (see section 3.1.1) to the CLI equivalent

System.Object.

4.10. The Runtime Environment

The runtime environment is a collection of helper classes and

functions used and referenced by many of the gencli submodules.

It is written in C#, compiled to a DLL (Dynamic Link Library),

then linked to generated code at compile-time.

It is composed of two files: a C# source file containing the real

code (src/pypylib.cs), and a Python module (rte.py) which

ensures the library is recompiled whenever the source if

modified, thus preventing bug due to forget to recompile the
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library.

pypylib is composed of three parts:

• a set of helper functions used to implements complex

RPython low-level instructions such as runtimenew and

ooparse int (see section 4.6),;

• a set of helper classes wrapping built-in types, as we saw in

section 4.5;

• a set of helpers used by the test framework (see section

4.11).

The first two parts are contained in the pypy.runtime

namespace, while the third is in the pypy.test one.

4.11. Testing gencli

As the whole PyPy, gencli is a test-driven project: there is at

least one unit test for almost each single feature of the backend.

This development methodology allowed us to early discover many

subtle bugs and to do some big refactoring of the code with the

confidence not to break anything.

We made a big effort on writing good tests: at the moment

of writing there are 310 gencli unit tests, composed by about one

thousand of lines, i.e. one third of the global three thousands

lines of code gencli is composed of.

The core of the testing framework is in the module

pypy.translator.cli.test.runtest; one of the most impor-
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tant function of this module is compile function(): it takes a

Python function, compiles it to CLI and returns a Python object

that runs the just created executable when called.

This way we can test gencli generated code just as if it were

a simple Python function; we can also directly run the generated

executable, whose default name is main.exe, from a shell: the

function parameters are passed as command line arguments, and

the return value is printed on the standard output, as shown by

listing 10.

Listing 10 Implicit and explicit execution of CLI code
from pypy.translator.cli.test.runtest\

import compile_function

def foo(x, y):
return x+y, x*y

f = compile_function(foo , [int , int])

assert f(3 , 4) == (7 , 12)

$ mono main.exe 3 4

(7 , 12)

10.1 10.2

gencli supports only few RPython types as parameters: int,

r uint, r longlong, r ulonglong, bool, float and one-length

strings (i.e., chars). By contrast, most types are fine for being

returned: these include all primitive types, list, tuples and

instances.

There are some gencli features whose only purpose is to

support the test framework. In particular, as we saw in section

4.10, pypylib.dll contains some helper functions that formats CLI

objects in a way that can be understood by Python, to be used

when printing the result value of a function.
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Conclusions and
future work

5.1. Current status of gencli

At the moment of writing gencli is quite mature but still

not completed: it can successfully compile a large number of

test snippet (see section 4.11) and the only two medium-sized

RPython programs available: rpystone and richards, which are

used for benchmarking purposes, as we will see in section 5.2.

The only big feature gencli lacks is the support for the

CustomDict built-in type, as we saw in section 4.5. Moreover

there are few known bugs that are waiting to be fixed and that

could prevent the compilation to be successful, so we have not

tried to compile the whole PyPy interpreter yet, though it is very

likely that gencli will be able to compile it in a few months.

Once gencli will have been completed, there are at least three

directions we might follow to improve it in the near future:

• optimizations;

• integration of application-level code with the .NET runtime;
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• integration of RPython-level code with the .NET runtime,

i.e. gencli as a general .NET compiler.

5.2. Early benchmarks

The PyPy distribution comes with two standard benchmarks for

measuring performances: rpystone and richards: the first is

an RPython porting of the standard benchmark pystone Python

benchmark, while the second is based on a Java version of a

benchmark originally written by Dr. Martin Richards in BCPL.

The main difference between the twos is that rpystone is

focused on algorithmic performances, while richards uses a lot

of object oriented features such as inheritance and late-binding.

We will see later how this difference impacts gencli performances.

The benchmarks have been ran on an box with the AMD

Athlon XP-M 3000+ CPU and 512 MB of RAM, under Linux

and Mono 1.1.13.4. The results are compared to those obtained

by genc with and without backend optimizations, which gencli is

not able to take advantage of, yet (see section 5.3.1).

Backend Result (pystone/seconds) Factor

genc 4,926,108 1.0x

genc w/o optimizations 1,592,356 3.1x

gencli 177,429 27.8x

Table 5.1: rpystone results

Table 5.1 show the results for rpystone: as expected, genc is

much more performant than gencli, especially with optimizations
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Backend Result (ms/iteration) Factor

genc 7.43 1.0x

genc w/o optimizations 16.20 2.2x

gencli 28.65 3.8x

Table 5.2: richards results

turned on.

The big surprise come when examining table 5.2, which shows

result for the richards benchmark. gencli is much closer to

genc: about 3.3 times and 1.7 times slower that genc with

optimizations turned on and off respectively. This is a big result,

considering that at the moment the code generated by gencli is

not optimized at all; probably one of the reasons of this great

result is that the Mono Virtual Machine is tailored for the efficient

execution of object oriented features used by richards.

5.3. Optimizations

There is a number of way we can improve the speed of the code

generated by gencli.

5.3.1. Backend optimizazions

Before generating code, low-level backends such as the C and the

LLVM ones run the backend optimization phase on the rtyped

flow graph. This phase is designed to be ran with lltypesystem,

but we might be able to use some of the optimizazions with

ootypesystem, too. Available optimizazions include: inlining,
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constant folding, dead-code removal, tail-recursion optimization.

5.3.2. Stack push/pop optimitazion

The CLI Virtual Machine is a stack based machine: this fact

doesn’t play nicely with the SSI form the flowgraphs are generated

in. At the moment gencli does a literal translation of the SSI

statements, allocating a new local variable for each variable of

the flowgraph, as we saw in section 4.6.

For example, consider the RPython code and the correspond-

ing flowgraph in listing 11. Listing 12.1 shows the code as it is

generated by gencli : as you can see, the results of add and sub

are stored in v0 and v1, respectively, then v0 and v1 are reloaded

onto stack. These store/load is redundant, since the code would

work nicely even without them, as shown by listing 12.2.

Listing 11 RPython snippet and its flow graph

def bar(x, y):

foo(x+y, x-y)

inputargs : x_0 y_0
v0 = int_add(x_0 , y_0)
v1 = int_sub(x_0 , y_0)

v2 = directcall ((sm foo), v0 , v1)

11.1 11.2

If we check the native code generated by the Mono JIT

compiler on x86 we can see that this redundand code is not

optimized, so we might consider to optimize it manually; it should

not be so difficult, but it is not trivial becasue we have to make

sure that the dropped locals are used only once.
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Listing 12 Unoptimized and optimized IL code
.locals init ( int32 v0,

int32 v1 ,
int32 v2)

block0:
ldarg ’x_0’
ldarg ’y_0’
add
stloc ’v0’
ldarg ’x_0’
ldarg ’y_0’
sub
stloc ’v1’
ldloc ’v0’
ldloc ’v1’
call int32 foo(int32 , int32)

stloc ’v2’

.locals init ( int32 v2)

block0:
ldarg ’x_0’
ldarg ’y_0’
add
ldarg ’x_0’
ldarg ’y_0’
sub
call int32 foo(int32 , int32)

stloc ’v2’

12.1 12.2

5.3.3. Mapping RPython exceptions to native CLI

exceptions

We have already addressed this optimization in section 4.7.1.

5.4. Integrate the interpreter with the .NET
Framework

Once we get the PyPy interpreter to run on the CLI virtual

machine, we will want to integrate it with the surrounding .NET

Framwork.

As an example, these are some of the goals we might want to

achieve:

• let Python code to access .NET libraries;

• let Python code to be called from the outside by other .NET

languages;
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• integrate Python classes with .NET classes, e.g., let Python

classes to subclass the .NET ones and vice-versa;

• possibility of building stand-alone executables.

They are not easy tasks, mainly because some Python

constructs are not directly supported by .NET and vice-versa:

for example, .NET doesn’t support multiple inheritance and

runtime addition/remotion of attributes to a class, while Python

doesn’t support function overloading. This means that before

implementing anything we would need to carefully design how

the two languages integrate.

5.5. gencli as a .NET compiler

At the moment of writing it’s not possible to use gencli to, say,

compiling an RPython program to a DLL that can be easily

reused by other .NET applications.

The biggest problem is that names of classes and functions are

mangled to assure they are unique, so it’s impossible to design a

clean interface for users.

Another issue to be considered is the integration with the

framework: at the moment is not possible to access system

libraries, e.g. to call System.Console.WriteLine.

Finally, there is the same problem we saw in section 5.4: RPy-

thon and .NET semantics don’t completely overlap. Fortunately

in this case the problem is much easier to solve, because of the

more static-ness of RPython: many constructs that could cause
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problem are not allowed (e.g., runtime addition/remotion of at-

tributes to a class), but there is still some small issue that need

to be addressed, such as how to expose function overloading to

RPython programs.

In conclusion, there is still some work to do on gencli to make

it a “real” .NET compiler, but it should not be so hard to get it

done.
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